

2023 CONSUMER CONFIDENCE REPORT

GRAFTON PWS 2023 Drinking Water Consumer Confidence Report for the 2023 Calendar Year

The Grafton PWS has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, and how to participate in decisions concerning your drinking water and water system contacts.

Source Water Information

The Grafton PWS receives its drinking water from Avon Lake Regional Water (Avon Lake City PWS.) Avon Lake Regional Water receives its drinking water from Lake Erie. In Avon Lake there are two separate intakes to ensure our ability to pump from this virtually endless source of quality raw water.

Avon Lake Regional Water treats water to meet EPA drinking water quality standards. A Source Water Assessment Report was prepared for Avon Lake Regional Water by Ohio EPA. Copies of the complete source water assessment report prepared for Avon Lake are available by contacting Jason Gibboney at (440) 933-3229.

Excerpt from Drinking Water Source Assessment for the City of Avon Lake

6.0 SUSCEPTIBILITY ANALYSIS

For the purposes of source water assessments, all surface waters are considered to be susceptible to contamination. By their nature surface waters are accessible and can be readily contaminated by chemicals and pathogens with relatively short travel times from source to the intake. Based on the information compiled for this assessment, the Avon Lake Water System drinking water source protection area (CAZ) is susceptible to contamination from municipal waste water treatment discharges, industrial waste water discharges, air contamination deposition, combined sewer overflows, runoff from residential, agricultural and urban areas, oil and gas production and transportation, and accidental releases and spills from rail and vehicular traffic as well as from commercial shipping operations and recreational boating.

It is important to note that this assessment is based on available data, and therefore may not reflect current conditions in all cases. Water quality, land uses and other activities that are potential sources of contamination may change with time. While the source water for the City of Avon Lake is considered susceptible to contamination, historically, the Avon Lake Public Water System has effectively treated this source water to meet drinking water quality standards.

What are sources of contamination to drinking water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife; (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; (E) Radioactive contaminants, which can be naturally-occurring or be the result of oiland gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Federal Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791).

Who needs to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infection. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

About your drinking water.

The EPA requires regular sampling to ensure drinking water safety. Avon Lake Regional Water

conducted sampling for bacteria; inorganic; synthetic organic; volatile organic; disinfection by products; and numerous other parameters during 2023. Samples were collected for a total of at least 61 different contaminants most of which were not detected in the water supply. The Ohio EPA requires us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, are more than one year old.

Lead Educational Information

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Grafton PWS is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 800-426-4791or at http://www.epa.gov/safewater/lead.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (1-800-426-4791).

Turbidity

Turbidity is a measure of the cloudiness of water and is an indication of the effectiveness of our filtration system. The turbidity limit set by the EPA is 0.3 NTU in 95% of the samples analyzed each month and shall not exceed 1 NTU at any time. As reported above, Avon Lake Regional Water's highest recorded turbidity result for 2023 was 0.2 NTU and lowest monthly percentage of samples meeting the turbidity limits was 100%.

Table of Detected Contaminants

Listed below is information on those contaminants that were found in the Grafton PWS drinking water.

GRAFTON PWS

TABLE OF DETECTED CONTAMINANTS 2023

GRAFTON PWS	IABLE	OF DETEC	, IED COI	1 AMMANTO 2	LULJ			
Contaminants (Units)	MCLG	MCL	Leve			Samp Yéar		
Microbiological Contaminan	ts							
Turbidity (NTU) ¹	NA	117	0.16	0.02 to 0.2	No	2023	Soil Runotf	
Turbidity (% samples meeting standard)	NA	П	100%	100%	No	2023	Soil Runoff	
Total Organic Carbon (TOC) ²	NA	П	1.32	1.0 to 1.7:	No	2023	Naturally present in the environment	
Disinfectants and Disinfection	n Byproducts	3						
Total Chlorine (ppm)	MRDLG = 4	MRDL = 4	1.39	1.2 to 1.40	No	2023	Water additive used to control microbes	
Haloacetic Acids (HAA5) (ppb)4	NA	60	16.8	9.60 to 20.3	No	2023	By-product of drinking water disinfection	
Total Trihalomethanes (TTHM) (ppb)4	NA	80	36.55	17:1-51.6	No	2023	By-product of drinking water disinfection	
Inorganic Contaminants								
Barium (ppm)	2	2	0.02	NÁ	Nö	2023	Discharge of drilling wastes; Discharge from metal refineries; Erosior of natural deposits	
Fluoride (ppm)	4	4	0.69	0.69 to 1.20	No	202 3	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories	
litrate (ppm)	10	10	o.9:e-	0.7134 70.9:6	No	2023	Run off from fertilizer use Leaching from septic tanks, sewage; Erosion of natural deposits	
ead and Copper						e-s	5	
	Action Level (AL)	Individu Results a the Al	òver	90% of test levels were less than	Violation	Year Sampled	Typical source of Contaminants	
1	15 ppb	NA		<2.0	Nů	2023	Corosion of household in plumbing systems; erosion of natural deposits	
	Zero out of 10 samples were found to have lead levels in excess of the lead action level of 15							
pper (ppm)	1.3 ppm	NA		0.06	No	2023	Erosion of natural deposits; leaching from wood preservatives; Corrosion of household plumbing systems	
	Zero out of 10 samples were found to have copper levels in excess of the copper action jevel of 1.3 ppm.							
	The same of the sa							

¹Turbidity is a measure of the cloudiness of water and is an indication of the effectiveness of our filtration system. The turbidity limit set by the EPA

is 0.3 NTU in 95% of the samples analyzed each month and shall not exceed 1 NTU at any time. As reported above the Avon Lake WTP highest recorded turbidity result for 2023 was 0.2 NTU and lowest monthly percentage of samples meeting the turbidity limits was 100%.

- The value reported under "Level Found" for Total Organic Carbon (TOC) is the lowest ratio between percentage of TOC actually removed to the percentage of TOC required to be removed. This removal ratio is calculated as the ratio between the actual TOC removal and the TOC rule removal requirements and other parameters. A value of at least one (1) indicates that the water system is in compliance with TOC removal requirements.
- These contaminants level found is the highest compliance value based on a running annual average. This average includes results from 2022 & 2023.
- Disinfection byproducts are the result of providing continuous disinfection of your drinking water and form when disinfectants combine with organic matter naturally occurring in the source water. Disinfection byproducts are grouped into two categories, Total Trihalomethanes (TTHM) and Haloacetic Acids (HAA5). USEPA sets standards for controlling the levels of disinfectants and disinfectant byproducts in drinking water, including both TTHMs and HAA5s.

DEFINITIONS

- 1. Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- 2. Contaminant: Any physical, chemical, biological, or radiological substance or matter in water.
- 3. Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- 4. Maximum Contaminant Level Goal (MCLG): The level of contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- 5. Residual Disinfectant Level (MRDL): The highest residual disinfectant level allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- 6. Maximum Residual Disinfectant Level Goal (MRDLG): The level of residual disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- 7. NA: Not Applicable
- 8. ND: Not Detected
- 9. NTU: Nephelometric Turbidity Units
- 10. Parts per billion (ppb) or Micrograms per Liter (ug/L) are units of measure for concentration of a contaminant. A part per billion corresponds to one second in 31.7 years.
 5 | Fage

- 11. Parts per million (ppm) or Milligrams per Liter (mg/L) are units of measure for concentration of a contaminant. A part per million corresponds to one second in a little over 11.5 days.
- 12. PFAS: Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals applied to many industrial, commercial and consumer products to make them waterproof, stain resistant, or nonstick. PFAS are also used in products like cosmetics, fast food packaging, and a type of firefighting foam called aqueous film forming foam (AFFF) which are used mainly on large spills of flammable liquids, such as jet fuel. PFAS are classified as contaminants of emerging concern, meaning that research into the harm they may cause to human health is still ongoing.
- 13. Total Organic Carbon (TOC) has no health effects. However, TOC provides a medium when the water is disinfected for the formation of disinfection byproducts. TOC removal early in the treatment plant is required.
- 14. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. For example, Avon Lake Regional Water adds orthophosphate to maintain compliance with the lead and copper rule.
- 15. VOC: Volatile Organic Chemicals
- 16. WTP: Water Treatment Plant
- 17. The "<" Symbol: A symbol that means less than. A result of <5 means that the lowest level that could be detected was 5 and the contaminant in that sample was not detected.

License to Operate (LTO) Status Information

In 2023 Grafton PWS had an unconditioned license to operate our water system.

Public Participation and Contact Information

How do I participate in decisions concerning my drinking water?

Public participation and comment are encouraged at regular meetings of the Grafton Village Council which meets the first and third Tuesday of every month at 7:00PM at the Village Hall located at 960 Main St. Grafton, OH 44044. For more information on your drinking water contact CJ Wowk Superindentant at 330-441-0810 or Operator of Record Mike Bracken at 330-441-0810

DRINKING WATER NOTICE

Cyanobacteria Screening monitoring requirements not met for AVON LAKE public water system

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the weeks of 11/13/22-11/26/22 and 11/27/22-12/03/22 we did not monitor for Cyanobacteria Screening and therefore cannot be sure of the quality of our drinking water during that time.

What Should I Do?

This notice is to inform you that AVON LAKE public water system did not monitor, and report results for the presence of Cyanobacteria Screening in the public drinking water system during the weeks of 11/13/22-11/26/22 and 11/27/22-12/03/22 monitoring period, as required by the Ohio Environmental Protection Agency. You do not need to take any action in response to this notice.

What is being done?

Upon being notified of this violation, the water supply was required to have the drinking water analyzed for total Cyanobacteria Screening according to their current monitoring schedule. The water supplier will take steps to ensure that adequate monitoring will be performed in the future.

A sample was (will t	pe) collected on			
	additional information may be obtained by contacting AVON LAKE at:			
Contact Person:	Jason Gibboney			
Phone Number:	(440)-933-6226			
Mailing Address:	201 Miller Rd., Avon Lake, OH 44012			
	ormation with all the other people who drink this water, especially those who may not have directly (for example, people in apartments, nursing homes, schools and businesses). You gethis notice in a public place or distributing copies by hand or mail.			

PWSID: OH4700311 Facility ID: 4755816

Included on CCR Date Distributed:

Tier 3: Monitoring Violation Notice